1. Let $f \in \operatorname{Hol}(\mathcal{D})$, and let L be a line in \mathbb{C}. If $f(z) \in L$ for all $z \in \mathcal{D}$, then prove that f is constant on \mathcal{D}.

Answer: If f is non constant holomorphic then $f(\mathcal{D})=L$ should be open as a non constant holomorphic function is an open map. But line L is not open in \mathbb{C}. Hence f must be constant.
2. Evaluate $\int_{C_{1}(0)} \frac{\cos z}{z} d z$ and $\int_{C_{1}(0)} \frac{\sin z}{z^{2}-5} d z$.

Answer: Let $f(z)=$ cosz. Clearly, f is holomorphic on \mathbb{C}. Let U be an open region containing $C_{1}(0)$ and its interior and $U \subset B_{\sqrt{5}}(0)$.
(i) By Cauchy's integral formula, we have $\int_{C_{1}(0)} \frac{f(z)}{z} d z=f(0)=1$.
(ii) Since $\frac{\operatorname{sinz}}{z^{2}-5}$ is holomorphic on U, therefore $\int_{C_{1}(0)} \frac{\operatorname{sinz}}{z^{2}-5} d z=0$.
4. Let $f \in \operatorname{Hol}(\mathbb{C})$, and let $f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right)+f\left(z_{2}\right)$ for all z_{1}, z_{2}. Prove that there exists a scalar α such that $f(z)=\alpha z$ for all z.

Ans: By the given hypothesis we have for $n \in \mathbb{N}$

$$
f(n)=n f(1)
$$

and

$$
f(-n)=-n f(1)
$$

Now clearly

$$
f\left(\frac{m}{n}\right)=\frac{m}{n} f(1) \quad \text { for all } \frac{m}{n} \in \mathbb{Q} .
$$

Since \mathbb{Q} is dense in \mathbb{R}, and f is continuous

$$
f(x)=x f(1) \quad \text { for all } x \in \mathbb{R}
$$

Take $g(z)=f(1) z$. Now consider

$$
Z=\{z \in \mathbb{C}: f(z)=g(z)\}
$$

Then clearly, Z contains \mathbb{R} as well as limit point. Hence by identity theorem $f(z)=g(z)$. This finishes the proof.
5. Let $f \in \operatorname{Hol}(\mathcal{D})$, and let f has distinct zeros z_{1}, \ldots, z_{n} with multiplicities m_{1}, \ldots, m_{n}, respectively. Prove that there exists $g \in \operatorname{Hol}(\mathcal{D})$ such that

$$
f(z)=\left(z-z_{1}\right)^{m_{1}} \ldots\left(z-z_{2}\right)^{m_{n}} g
$$

Ans: We can take power series expansion f in $B_{r_{1}}\left(z_{1}\right) \subset \mathcal{D}$, for some $r_{1}>0$. Since f has zero at z_{1}, we have

$$
f(z)=\left(z-z_{1}\right)^{m_{1}} g_{1}(z)
$$

Now g_{1} is also a power series and $f\left(z_{2}\right)=0$ but $\left(z_{2}-z_{1}\right) \neq 0$. So $g_{1}\left(z_{2}\right)=0$ and $g_{1}\left(z_{1}\right) \neq 0$. Therefore

$$
g_{1}(z)=\left(z-z_{1}\right)^{m_{2}} g_{2}(z)
$$

Continuing in this way we have

$$
f(z)=\left(z-z_{1}\right)^{m_{1}} \cdots\left(z-z_{n}\right)^{m_{n}} g(z)
$$

for some holomorphic function g.
6. Let \mathcal{D} be a domain in \mathbb{R}^{2} and let u and v be harmonic functions on \mathcal{D}. True or false (with justification): (i) $u+v$ is harmonic. (ii) $u v$ is harmonic.

Ans: Let u and v be harmonic functions on \mathcal{D}. Then

$$
u_{x x}+u_{y y}=0
$$

and

$$
v_{x x}+v_{y y}=0,
$$

where $u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}$ and $u_{y y}=\frac{\partial^{2} u}{\partial y^{2}}$. Clearly from the above equation we have

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)(u+v)=0 .
$$

This proves that $u+v$ is harmonic.
(ii) Consider $u(x, y)=v(x, y)=x y$. Then

$$
u_{x x}+u_{y y}=0 .
$$

Therefore u is harmonic. Similarly v is also harmonic. But

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)(u v)=2\left(y^{2}+x^{2}\right) \neq 0 .
$$

Hence product of two harmonic functions need not be harmonic.
7. Prove that for all polynomial $p \in \mathbb{C}[z]$,

$$
\sup _{z \in C_{1}(0)}\left|z^{-1}-p(z)\right| \geq 1 .
$$

Ans: Note that

$$
\sup _{z \in C_{1}(0)}\left|z^{-1}-p(z)\right|=\sup _{z \in C_{1}(0)}|1-z p(z)| .
$$

Let $f(z)=1-z p(z)$ for $z \in B_{1}(0)=\{z \in \mathbb{C}:|z|<1\}$. Then f is holomorphic on $B_{1}(0)$. Also $f(0)=1$. So by maximum modulus principle $\sup _{z \in C_{1}(0)}|f(z)| \geq 1$. This completes the proof.
8. Let f be a non-constant entire function. (i) Prove that the range of f is dense. (ii) If $|f|=1$ on $C_{1}(0)$, then describe f.

Ans: (i) Suppose range of f is not dense. Then there exists $w \in \mathbb{C}$ and $r>0$ such that $|f(z)-w|>r$ for every $z \in \mathbb{C}$. Consider

$$
h(z)=\frac{1}{f(z)-w} \quad z \in \mathbb{C} .
$$

Clearly, h is entire and

$$
|h(z)|=\frac{1}{|f(z)-w|}<\frac{1}{r}
$$

Hence by Liouville's theorem $h(z)$ is constant. Therefore $f(z)$ is constant on \mathbb{C}
9. Let $a_{n} \subseteq \mathbb{C}$ and let

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty
$$

and let

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{k^{n}}=0
$$

for all integer $k \leq 2$. Prove that $a_{n}=0$ for all n.

Answer: Suppose there exists a smallest integer k such that $a_{k} \neq 0$. Consider

$$
\sum_{n=k}^{\infty} a_{n} z^{n}=f(z)
$$

Since $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$ so $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\limsup \left|a_{n}\right|^{\frac{1}{n}} \leq 1$. Hence the radius of convergence of f is bigger than equal to 1 . Now $B_{\frac{1}{2}}(0)$ is inside the area of convergence for f. Hence f is holomorphic on $B_{\frac{1}{2}}(0)$. Now consider

$$
Z(f)=\left\{z \in B_{\frac{1}{2}}(0): f(z)=0\right\}
$$

Clearly $Z(f)$ contains the set $\left\{\frac{1}{n}: n \geq 3\right\}$. Therefore $Z(f)$ has limit point, namely 0 in $B_{\frac{1}{2}}(0)$. Hence by Identity theorem $f=0$. This completes the proof.

