Midterm Solution

1. Let $f \in Hol(D)$, and let L be a line in \mathbb{C} . If $f(z) \in L$ for all $z \in D$, then prove that f is constant on D.

Answer: If f is non constant holomorphic then f(D) = L should be open as a non constant holomorphic function is an open map. But line L is not open in \mathbb{C} . Hence f must be constant.

2. Evaluate $\int_{C_1(0)} \frac{\cos z}{z} dz$ and $\int_{C_1(0)} \frac{\sin z}{z^2 - 5} dz$.

Answer: Let f(z) = cosz. Clearly, f is holomorphic on \mathbb{C} . Let U be an open region containing $C_1(0)$ and its interior and $U \subset B_{\sqrt{5}}(0)$.

(i) By Cauchy's integral formula, we have $\int_{C_1(0)} \frac{f(z)}{z} dz = f(0) = 1$. (ii) Since sinz is holomorphic on U therefore $\int_{C_1(0)} \frac{f(z)}{z} dz = 0$

(ii) Since $\frac{\sin z}{z^2-5}$ is holomorphic on U, therefore $\int_{C_1(0)} \frac{\sin z}{z^2-5} dz = 0$.

4. Let $f \in Hol(\mathbb{C})$, and let $f(z_1 + z_2) = f(z_1) + f(z_2)$ for all z_1, z_2 . Prove that there exists a scalar α such that $f(z) = \alpha z$ for all z.

Ans: By the given hypothesis we have for $n \in \mathbb{N}$

$$f(n) = nf(1)$$

and

$$f(-n) = -nf(1).$$

Now clearly

$$f(\frac{m}{n}) = \frac{m}{n}f(1)$$
 for all $\frac{m}{n} \in \mathbb{Q}$.

Since \mathbb{Q} is dense in \mathbb{R} , and f is continuous

$$f(x) = xf(1)$$
 for all $x \in \mathbb{R}$.

Take g(z) = f(1)z. Now consider

$$Z = \{ z \in \mathbb{C} : f(z) = g(z) \}.$$

Then clearly, Z contains \mathbb{R} as well as limit point. Hence by identity theorem f(z) = g(z). This finishes the proof.

5. Let $f \in Hol(\mathcal{D})$, and let f has distinct zeros $z_1, ..., z_n$ with multiplicities $m_1, ..., m_n$, respectively. Prove that there exists $g \in Hol(\mathcal{D})$ such that

$$f(z) = (z - z_1)^{m_1} \dots (z - z_2)^{m_n} g$$

Ans: We can take power series expansion f in $B_{r_1}(z_1) \subset D$, for some $r_1 > 0$. Since f has zero at z_1 , we have

$$f(z) = (z - z_1)^{m_1} g_1(z)$$

Now g_1 is also a power series and $f(z_2) = 0$ but $(z_2 - z_1) \neq 0$. So $g_1(z_2) = 0$ and $g_1(z_1) \neq 0$. Therefore

$$g_1(z) = (z - z_1)^{m_2} g_2(z).$$

Continuing in this way we have

$$f(z) = (z - z_1)^{m_1} \cdots (z - z_n)^{m_n} g(z)$$

for some holomorphic function g.

6. Let \mathcal{D} be a domain in \mathbb{R}^2 and let u and v be harmonic functions on \mathcal{D} . True or false (with justification): (i) u + v is harmonic. (ii) uv is harmonic.

Ans: Let u and v be harmonic functions on D. Then

$$u_{xx} + u_{yy} = 0$$

and

 $v_{xx} + v_{yy} = 0,$

where $u_{xx} = \frac{\partial^2 u}{\partial x^2}$ and $u_{yy} = \frac{\partial^2 u}{\partial y^2}$. Clearly from the above equation we have

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(u+v) = 0$$

This proves that u + v is harmonic.

(ii) Consider u(x,y) = v(x,y) = xy. Then

$$u_{xx} + u_{yy} = 0.$$

Therefore u is harmonic. Similarly v is also harmonic. But

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(uv) = 2(y^2 + x^2) \neq 0.$$

Hence product of two harmonic functions need not be harmonic.

7. Prove that for all polynomial $p \in \mathbb{C}[z]$,

$$\sup_{z \in C_1(0)} |z^{-1} - p(z)| \ge 1.$$

Ans: Note that

$$\sup_{z \in C_1(0)} |z^{-1} - p(z)| = \sup_{z \in C_1(0)} |1 - zp(z)|.$$

Let f(z) = 1 - zp(z) for $z \in B_1(0) = \{z \in \mathbb{C} : |z| < 1\}$. Then f is holomorphic on $B_1(0)$. Also f(0) = 1. So by maximum modulus principle $\sup_{z \in C_1(0)} |f(z)| \ge 1$. This completes the proof.

8. Let f be a non-constant entire function. (i) Prove that the range of f is dense. (ii) If |f| = 1 on $C_1(0)$, then describe f.

Ans: (i) Suppose range of f is not dense. Then there exists $w \in \mathbb{C}$ and r > 0 such that |f(z) - w| > r for every $z \in \mathbb{C}$. Consider

$$h(z) = \frac{1}{f(z) - w} \quad z \in \mathbb{C}.$$

Clearly, h is entire and

$$|h(z)| = \frac{1}{|f(z) - w|} < \frac{1}{r}.$$

Hence by Liouville's theorem h(z) is constant. Therefore f(z) is constant on \mathbb{C}

9. Let $a_n \subseteq \mathbb{C}$ and let

$$\sum_{n=0}^{\infty} |a_n| < \infty$$

 $and \ let$

$$\sum_{n=0}^{\infty} \frac{a_n}{k^n} = 0$$

for all integer $k \leq 2$. Prove that $a_n = 0$ for all n.

Answer: Suppose there exists a smallest integer k such that $a_k \neq 0$. Consider

$$\sum_{n=k}^{\infty} a_n z^n = f(z).$$

Since $\sum_{n=0}^{\infty} |a_n| < \infty$ so $a_n \to 0$ as $n \to \infty$. Therefore $\limsup |a_n|^{\frac{1}{n}} \leq 1$. Hence the radius of convergence of f is bigger than equal to 1. Now $B_{\frac{1}{2}}(0)$ is inside the area of convergence for f. Hence f is holomorphic on $B_{\frac{1}{2}}(0)$. Now consider

$$Z(f) = \{ z \in B_{\frac{1}{2}}(0) : f(z) = 0 \}$$

Clearly Z(f) contains the set $\{\frac{1}{n}: n \geq 3\}$. Therefore Z(f) has limit point, namely 0 in $B_{\frac{1}{2}}(0)$. Hence by Identity theorem f = 0. This completes the proof.